翻訳と辞書
Words near each other
・ Euler (surname)
・ Euler angles
・ Euler Book Prize
・ Euler brick
・ Euler calculus
・ Euler characteristic
・ Euler circle
・ Euler class
・ Euler Committee of the Swiss Academy of Sciences
・ Euler D.I
・ Euler D.II
・ Euler diagram
・ Euler equations (fluid dynamics)
・ Euler filter
・ Euler force
Euler function
・ Euler Granda
・ Euler Hermes
・ Euler Hydro-triplane
・ Euler integral
・ Euler line
・ Euler method
・ Euler number
・ Euler number (physics)
・ Euler operator
・ Euler product
・ Euler pseudoprime
・ Euler Renato Westphal
・ Euler sequence
・ Euler Society


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Euler function : ウィキペディア英語版
Euler function

:''For other meanings, see List of topics named after Leonhard Euler''.
In mathematics, the Euler function is given by
:\phi(q)=\prod_^\infty (1-q^k).
Named after Leonhard Euler, it is a prototypical example of a q-series, a modular form, and provides the prototypical example of a relation between combinatorics and complex analysis.
==Properties==
The coefficient p(k) in the formal power series expansion for 1/\phi(q) gives the number of all partitions of k. That is,
:\frac=\sum_^\infty p(k) q^k
where p(k) is the partition function of k.
The Euler identity, also known as the Pentagonal number theorem is
:\phi(q)=\sum_^\infty (-1)^n q^.
Note that (3n^2-n)/2 is a pentagonal number.
The Euler function is related to the Dedekind eta function through a Ramanujan identity as
:\phi(q)= q^} \eta(\tau)
where q=e^ is the square of the nome.
Note that both functions have the symmetry of the modular group.
The Euler function may be expressed as a Q-Pochhammer symbol:
:\phi(q)=(q;q)_\infty
The logarithm of the Euler function is the sum of the logarithms in the product expression, each of which may be expanded about q=0, yielding:
:\ln(\phi(q))=-\sum_^\infty\frac\,\frac
which is a Lambert series with coefficients ''-1/n''. The logarithm of the Euler function may therefore be expressed as:
:\ln(\phi(q))=\sum_^\infty b_n q^n
where
:b_n=-\sum_\frac= -(3/2, 4/3, 7/4, 6/5, 12/6, 8/7, 15/8, 13/9, 18/10, ... ) (see OEIS (A000203 ))
On account of the following identity,
:\sum_ d = \sum_ \frac n d
this may also be written as
:\ln(\phi(q))=-\sum_^\infty \frac \sum_ d

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Euler function」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.